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ABSTRACT

This paper briefly outlines how a combination of various computational method-
ologies could reduce the enormous computational costs envisioned in using ad-
vanced CFD codes in gradient-based optimized multidisciplinary design (MdD)
procedures. Implications of these MdD requirements upon advanced CFD codes
are somewhat different than those imposed by a "single" discipline design. A means
for satisfying these MdD requirements for gradient information is presented which
appears to permit: first, some leeway in the CFD solution algorithms which can
be used; second, an extension to 3-D problems; and third, straightforward use of
other computational methodologies. Many of these observations have previously
been discussed as possibilities for doing parts of the problem more efficiently; the
contribution here is observing how they fit together in a mutually beneficial way.



INTRODUCTION

A number of observations concerning various computational methodologies relevant to large-
scale, multidisciplinary, gradient-based optimization for engineering systems design problems are
discussed. In particular, these observations address the situation where one (or more) discipline
response(s) required by the optimized design procedure involves the analysis of a system of
nonlinear partial differential equations (PDE) which, when discretized, form a very large set of
algebraic equations which must be solved iteratively. This situation occurs, for example, when
advanced computational fluid dynamics (CFD) codes are applied in a multidisciplinary sensitivity
analysis (SA) procedure for optimizing an aerospace vehicle design. This is the context in which
the following remarks are cast; however, it is felt that the present discussion and observations
have broader utility and more general applications.

This paper discusses these observations in a general way, briefly outlining how the combi-
nation of various computational methodologies could reduce the enormous computational costs
envisioned in using advanced CFD codes in an optimized multidisciplinary design (MdD) proce-
dure. Implications of these MdD requirements upon advanced CFD codes are somewhat different
than those imposed by a "single" discipline design. A means for satisfying these MdD require-
ments for gradient information is presented which appears to permit: first, some leeway in the
CFD solution algorithms which can be used; second, an extension to 3-D problems; and third,
straightforward use of other computational methodologies. Many of these observations have
previously been discussed as possibilities for doing parts of the problem more efficiently; the
contribution here is observing how they fit together in a mutually beneficial way.

The present interest and work have been stimulated by two research programs related to
incorporating advanced CFD capabilities in MdD. The NASA Langley Research Center High-
Speed Airframe Integration Research (HiSAIR) project (Refs.[1, 2]) is focused on the High-
Speed Civil Transport (HSCT) design activity in order to develop methodology and computational
environment for MdD and analysis. The emphasis is on including most of the required disciplines
and interactions at a sufficiently advanced level of analysis in order to demonstrate improved
engineering designs. The second stimulus is the NASA Computational Aerosciences (CAS)
project of the High Performance Computing and Communications (HPCC) Program (Ref.[3])
where one of the applications is the HSCT. The two major thrusts are enhanced simulations
via multidisciplinary formulations and improved computational efficiency via massively parallel
hardware. In both programs, the primary NASA Langley approach being pursued is MdD via
sensitivity analysis.

MULTIDISCIPLINARY DESIGN REQUIREMENTS

A recent survey by Jameson (Ref.[4]) discusses the successes and challenges in CFD
and outlines numerical algorithms currently being used to obtain iterative solutions for the
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various systems of type-dependent, nonlinear PDE’s mathematically modelling different levels of
physical approximation and configuration complexity. Automated optimization in aerodynamic
design is listed as one of the remaining challenges for CFD. He primarily discusses aerodynamic
design and shape optimization as "single" discipline design problems. These problems continue
to be topics of much interest as evidenced, for example, in the survey by Dulikravich (Ref.[5])
where a number of methods are discussed; and also in the recent works by Jameson (Refs.[6, 7])
and Ta’asan, et al. (Ref.[8]) which utilize adjoint approaches. In these latter papers, the adjoint
variable is formed with respect to a cost function generally composed of both objective and
constraint functions appropriate to a single discipline. For a single discipline design, these latter
design methods appear to be computationally much more efficient and therefore more feasible
than the optimizer-based SA methods.

Procedures for multidisciplinary optimization of engineering systems have been addressed
by Sobieski (Ref.[9]). He proposes a unified system SA guided by system sensitivity derivatives
(SD); the optimizer code or algorithm which uses these SD is the outer-most loop of the entire
design process. The objective and constraint functions are now generally composed of output
functions from several disciplines. Each single-discipline analysis code is then to supply not
only the output functions required for the constrained optimization process and other discipline
analysis inputs, but also the partial derivatives of all of these output functions with respect to its
input variables. These variables include not only the MdD variables, but also output functions
from other disciplines which implicitly depend on the MdD variables. However, the application
of advanced CFD to provide aerodynamic analyses within such procedures appears to be severely
hampered by the sheer magnitude of the computational tasks involved, particularly if these SD
must be obtained by "brute-force" finite differencing. There has been recent interest and progress
in obtaining quasi-analytical SD from advanced CFD codes as evidenced in the works by Elbanna
& Carlson (Ref.[10]); Taylor, et al. (Ref.[11]); Baysal, et al. (Ref.[12]); and Shubin & Frank
(Ref.[13]), for example. As can be seen, direct solver methods have been used in 2-D problems;
however, their use in 3-D optimized MdD via SA appears highly unlikely (Ref.[10]) as a viable
approach. In the appendix of this paper, an estimate (perhaps optimistic) of the magnitude of
the advanced CFD task for steady external aerodynamics in 3-D MdD via SA is given.

IMPLICATIONS OF MdD REQUIREMENTS FOR CFD'

In the system SA procedure of Sobieski (Ref.[9]), a CFD code must be able to compute
efficiently either the sensitivity functions, @’ (taken herein to mean g% ), of its solution state
vector, @, with respect to each of its own input design variables, D, or else, the adjoint variables,
A (constructed with respect to each of its required output functions, F') in order that the required
output function SD can be formed. One concludes from the work of Shubin & Frank (Ref.[13])
that the sensitivity functions Q' or adjoint variables A must be consistent discrete derivatives or
adjoints of the discrete solution state vector ) in order for the optimization procedure to be fully

1 In this and following sections, dependencies of quantities upon grid point indices, discipline index, unknown variable index, design variable
index, output function index, etc. have been suppressed. All equations are vector or matrix equations, generally with very large dimensions.
These indicial dependencies and dimensional estimates are given in the Appendix.



successful, i.e., converge. This aspect appears to adversely affect direct application to advanced
CFD codes; the discretized systems of equations for Q' or A are not as well conditioned as
in other disciplines and additional errors, as noted below, may occur. Aspects of retrofitting
existing CFD codes to compute SD have been discussed in a recent report by Shubin (Ref.[14]).

In advanced CFD codes, the steady flow-field solution state vector @) is determined from
a set of discretized nonlinear algebraic equations which are solved iteratively. Symbolically,
R(Q, D, X) = 0 where the dependence of the residual R on the discrete grid X is also noted.
Iteration according to Newton’s method (superscript n denotes iteration step):

6R" AQ" R*(Q", D, X)
Qn+l = Qn + AQ"

gives Q*, the "root” of R(Q*, D, X) = 0 at convergence. The output functions, F, required
by MdD (and analysis) consist, for example, of quantities like surface loadings (for structures),
lift-drag-moment polars (for performance), stability derivatives (for control), etc. at multiple
flow conditions. Most of these functions then are taken as F' = F(Q*, D, X) where Q* and X
are usually evaluated at the configuration surface; that is, on the boundary.

(1

The SD of a required output F' with respect to an input D is then
dFF OF OF oF
D -3D + == 30 + X 2)
Thus one needs partial derivatives (sensitivity functmns) such as Q' and X’ (taken herein to
mean %). Note that for the "body-oriented” or surface fitted grids of modern CFD codes,
X' # 0 (it may not even be sparse) since the surface shape design variables are included in the
set D and are "boundary-values" for the grid generation equations or problem. Some aspects
related to obtaining these derivatives are discussed in Refs.[15] and [16]. All derivatives in
Eq. (2) can be generated by "brute-force" finite differencing; but, there are drawbacks, not the
least of which is an inordinate computational task. If one applies the quasi-analytical approach
suggested by Sobieski (Ref.[17]), then from R*(Q, D, X) =0 one obtains upon differentiating
with respect to D (recognizing that 3%- = 0):
OR* _ oR* BR*
- aQ V=30 " ox
where superscript » means evaluated at @*. This is essentially the linear equation from which
most CFD solutions for Q' have been obtained via either direct solver or iterative methods. See,
for example, (Refs.[10-13]) and the earlier references quoted by them. Comparison of Egs.
(1) and (3) shows that if a Newton solver is used to get @*, then sensitivity functions, Q' ,
come essentially free for new right hand sides since 3R is already known and factored. This
has been previously noted and used in 2-D problems. For 3-D CFD problems, it appears that
iterative solutions must be used to get Q' because the direct solvers require too much memory;
however, as noted in Ref.[10], many iterative algorithms for solving Eq. (3) converge very
slowly. This and the concerns expressed by Shubin (Ref.[14]) prompted the present approach
for obtaining consistent SD.
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AN INCREMENTAL ITERATIVE FORM FOR CONSISTENT SD

A closer comparison of the nonlinear Eq. (1) used to obtain the solution @ and typical
iterative forms of the linear Eq. (3) used to obtain the sensitivity Q', however, shows another
fundamental difference between the two. Eq. (1) is written in the incremental or "delta-" form
(unknown is AQ™) and the RHS vanishes when the residual R vanishes; i.e., when the implicit
discretized state equations for steady flow are satisfied. The operator on the LHS needs not
be exactly %%; in order to obtain convergence; in fact, for almost all 3-D CFD algorithms the
operator is not the Newton operator because there are truncation, iterative, and/or splitting errors.
Acceleration of an iterative solution for Q* is obtained from Eq. (1) by modifying the LHS
operator (See, for example, Ref.[4], where Jameson calls this the “correction” form).

The iterative incremental form of Eq (3) for the sensitivity Q' is

aR aR* dR* , (dR*\"
(AQ) (Q) BXX=(dD)

_ (Q)"“ = (Q) (AQ)

where £ 7917 implies that the LHS operator need not be exactly & —50- All that is required here is
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a LHS operator approximation with good convergence properties; when the RHS vanishes (

is zero), consistent discrete derivatives in the sense of Ref.[13] will be obtained if the dlscrete
approximation on the RHS of Eq. (4) is consistent with that on the RHS of Eq. (1). The detailed
computational aspects of and advantages from using Eq. (4) rather than Eq. (3) to obtain SD
for CFD solutions are discussed by Korivi, et al. (Ref.[18]).

Similar comments apply to the discrete adjoint variables A, constructed with respect to the
required output functions F. Following the procedure of Hou, et al. (Ref.[19]) an adjoint
variable A for each function F is introduced as the multiplier of R*(@, D, X) = 0 and then
added to F so that formally one obtains

F(Q,D,X)=F(Q,D,X)+ ATR*(Q, D, X) (5)
where superscript 7' means transpose and the tilde indicates a functional difference between the
two F’s. Differentiation with respect to the design variable D can be written several ways

dFF  dF  rdR*
-t D )
oF  OF oF _,

7
=30 tax* Y50
_OF  OF , r(OR* OR*_, rOR* OF\ .,
= Taxy T4 (3D+797X +\ 450 T30)¢ ©
The discrete adjoint variable A is defined as the solution of (%6) = 0; that is,
' T ’ sapeNT ' T
_(6_1_')'_) A= (B_F_) (7
oQ a0Q



Thus the coefficient of Q' in Eq. (6) vanishes, so that

+ X'+ + ==X

dF _OF OF ., .r(0R' OR "
dD oD ' ox \3D T ax )

The incremental form for iteratively solving Eq. (7) for the discrete adjoint A is

or\T . (9R\T ., (0F\T oi\"\"
’(BQ) a4 “(W) A +(%) B ((b—é) ) ©

A" = A" 4 A4

where here again, the tilde on the LHS indicates that the discrete operator may be approximate.
Upon convergence, the RHS is zero; that is, Eq. (7) is satisfied. Therefore, the RHS must be a
consistent discrete form agreeing with that on the RHS of Eq. (1), in the sense of Ref.[13]. In
the recent works of Jameson (Refs.[6, 7]) and Ta’asan, et al. (Ref.[8]), the adjoint equations they
introduce are ultimately solved as discrete, incremental, iterative forms somewhat analogous to
Eq. (9). However, the iterative details and construction of the adjoints differ from one another
as well as what is outlined here.

The choice between using the sensitivity function ( @' ) or adjoint variable ( A ) approach in
obtaining the single discipline sensitivity derivatives required for MdD via SA appears to depend
upon whether there are a lesser number of active design variables ( D ) or a lesser number of
required output functions ( F'), respectively. The sensitivity function @' and the adjoint variable
A are related, since, for R*(Q, D, X) =0, F(Q,D,X) = F(Q, D, X) according to Eq. (5) and
upon subtracting Eq. (2) from Eq. (8) one obtains

OR* OR*
T - !
Q A (6D+6XX) (10)

Q

In a multi-point MdD exercise, both procedures may be used at different flow conditions, for
example. In either case, though, the incremental or "delta-" form of the governing discrete
equation set allows some leeway in the numerical algorithms which can be used to obtain
efficient iterative solutions which are consistent discrete derivatives or adjoints. This form also
appears extendable to 3-D CFD codes where computer memory limitations prevent solution by
direct methods for the SD required in MdD.

CONSEQUENCES OF ITERATIVE NONCONVERGENCE

The previous sections have addressed the MdD requirements, implications, and consistency
concerning SD from advanced CFD codes. The equations shown have been derived under the
asumption that R*(Q, D, X) = 0, which is not generally true for iterative CFD solutions. In
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fact, for many “practical engineering results” obtained from 3-D CFD codes, one frequently
accepts “solutions” Q*, where the maximum of R" (over the entire flow field) may have been
reduced only two or three orders of magnitude from its initial value, R!. One associates the
accuracy of Q* with the discretization (truncation) errors due to the grid size and algorithm; this
can be done only if the errors due to nonconvergence are not larger. The concept of consistent,
discrete derivatives or adjoints, in the sense of Ref.[13], recognizes and admits the truncation
error, but not others which may mask it.

Nonconvergence errors in Q* show up in the coefficients of Eqs. (3) and (4)nso that Q'
inherits nonconvergence errors resulting from R" # 0 as well as those from (%%*-) # 0. The

Q' errors then propagate into the SD obtained from Eq. (2). For the adjoint variable formulation,
it is seen from Eq. (5) that if R* # 0, then F # F. The solution for A from Egs. (7) or (9)

* T "
inherits errors in Q* through the coefficient (%%—) . whereas the SD from Eq. (8), %, has

errors due to those from both A and Q* (through the partial derivatives of R*). Thus F # F
and ;‘j‘% # 51};; there may be questions about which pair should be provided to the MdD: F

and j‘% or F and 5%.

OTHER IMPLICATIONS OF INCREMENTAL ITERATIVE FORM

The incremental iterative form for solution of large linear systems of equations, such as
Eqs. (4) and/or (9), also leads to straightforward or better application of other computational
methodologies. Of particular interest are aspects related to use of parallel processors and
automatic differentiation (AD) techniques or other symbolic differentiation methods. In MdD via
SA, several coarse-grained parallelizations occur naturally. For example, simultaneous analysis
runs of codes from different disciplines and simultaneous analysis runs of a single discipline
code at perturbed input conditions in order to obtain SD by "brute-force" finite differencing can
be done in parallel. Here, however, we refer to fine-grained parallelization of codes to solve
the incremental form equations for Q' and A. Again, the freedom allowed in the choice of
approximate operators for the LHS of Eqgs. (4) and (9) as opposed to those fixed operators on
the LHS of Egs. (3) and (7) can be exploited to tailor an algorithm to operate efficiently on a
vector or massively parallel processor.

As pointed out by Griewank (Refs.[20, 21]), AD techniques have not yet been discovered
by most applications-oriented code developers, ie., the derivitive takers or users. Our naive
perception is that AD is symbolic or exact algebraic differentiation at every uniary- or binary-
operation code level combined with extensive use of the chain rule to compute the (forward)
derivatives of a code output function with respect to its input variables. This is done before
compilation, generating code such that upon execution these derivatives are calculated more-
or-less in lockstep with the computation of that output function. Research on AD techniques
continues (Ref.[22]) and some codes are available (Ref.[23]). Shubin (Ref.[14]) has suggested
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that these techniques might be useful for generating Jacobians, %% , for CFD codes where they
are not readily available in order to compute SD.

Our initial concerns about using AD to obtain Q' or A from Eqgs. (3) or (7) were related
to how the iterative implicit solution algorithm and its type-dependent operators would be
"differentiated” and what the additional computational memory and time requirements would
be. Preliminary unpublished results of Griewank and coworkers? show that a newly developed
AD code, when applied to the iterative implicit solution algorithm (with its solution dependent
operators) for the 2-D transonic small perturbation code of Elbanna and Carlson (Ref.[24]),
produces consistent discrete derivatives. The point to be made here is that for Eqs. (4) or (9),
AD needs to be applied only to get the RHS derivatives; the LHS operators are approximate and
need not be exact Jacobians in order to get consistent discrete Q' or A. In either case, however,
additional derivatives are also required for the RHS of Eqgs. (2) or (8) in order to obtain the
required SD. Issues regarding both computer run time and memory storage requirements in AD
are still being actively investigated (See, for example, Ref. [22].). However, it appears that for
equations cast in the iterative incremental form, such as Eqs. (4) or (9) as opposed to Egs. (3)
or (7), storage for only Jacobian-vector products and not the Jacobian matrix itself is required.

Elbanna and Carlson (Ref.[10]) have used symbolic differentiation methods to obtain the
terms and coefficients required by an Eq. (3) form for the 3-D full potential equation on a
Cartesian grid. These quantities are, of course, those appearing on the RHS of Eq. (4); perhaps
this latter linear equation is the form to be solved, using an efficient approximate operator on
the LHS.

Both the AD and symbolic differentiation techniques, when applied to the discretized code,
should produce consistent discrete derivatives or adjoints. When either of these techniques
reaches a robust routine applications stage then perhaps the quantities needed for the RHS of
Eq. (4) (and/or Eq. (9)) can be generated from efficient Eq. (1) solvers; that is, Eq. (1) with
approximate LHS operator %%. Then SD can be calculated from those same efficient solvers
with RHS terms appropriate to the derivatives and approximate LHS operators fixed at Q*.

CONCLUDING REMARKS

Several observations concerning various computational methodologies relevant to large-
scale, multidisciplinary, gradient-based optimization for engineering systems design problems
have been discussed. These observations address the situation where one (or more) discipline
response(s) required by the optimized design procedure involve the analysis of a system of
nonlinear PDE’s which, when discretized, form a very large set of algebraic equations which
must be solved iteratively. This situation occurs, for example, when advanced CFD codes are

2 These findings were communicated by Andreas Griewank and coworkers, at Argonne National Laboratory. They applied their newly
developed code ADIFOR, mentioned in the Preface of Ref.[22], to the referenced sample transonic flow analysis code provided to them by
NASA.



applied in a multidisciplinary procedure for optimizing an aerospace vehicle design. A means
for satisfying the MdD requirements for gradient information has been presented which appears
to permit: first, some leeway in the CFD solution algorithms which can be used; second, an
expansion to 3-D problems; and third, straightforward use of other computational methodologies.
Many of these observations have been previously discussed as possibilities for doing parts of the
problem more efficiently; the contribution here is observing how they fit together in a mutually
beneficial way.

In particular, an incremental iterative form is proposed for solving the large systems of
linear equations (for either the sensitivity functions @’ or adjoint variables A) needed in order to
obtain consistent, discrete SD required by a MdD from 3-D CFD codes. This form, called the
“delta” or “correction” form, is commonly used in CFD for obtaining the solution state vector
(Q from the nonlinear governing flow equations. It allows one to approximate the LHS operator
of an iterative equation with one which can be adapted for efficiency, machine architecture,
computational algorithm, etc.; all that is required of the approximation is convergence. What
appears on the RHS of the iterative equation is the current iterate evaluation of the condition
to be satisfied; that is, a zero at convergence. It is also noted that symbolic differentiation or
AD techniques may be used to create, from existing CFD codes, the derivative terms needed
to construct the RHS of this incremental iterative equation form from which computation of
consistent, discrete SD follows.



APPENDIX — INDICIAL DEPENDENCIES OF VARIABLES WITH
DIMENSIONAL SIZE AND COMPUTATIONAL ESTIMATES

One purpose of this appendix is to indicate the dependency of the variables introduced in
the main text upon relevant indicial parameters in order to estimate their vector or matrix sizes.
These parameters are governed not only by the specific physical problem and its modelling, but
also by both the CFD solution technique and the optimized MdD procedure. It is assumed here
that the fluid flow problem to be solved by CFD is three dimensional, since this will be the case
for most MdD exercises for aerospace vehicles.

Another purpose of this appendix is to estimate the magnitude of the CFD task in terms of
computational time and number of required solutions. Several indices are included in order to
estimate the total number of solutions required in the MdD process.

Discipline Variables

The variables introduced in the text and listed below occur (that is, can be defined or may be
used) in each of the individual disciplines which participate in a MdD exercise. These variables
are illustrated here by indicating typically what they are in steady aerodynamics.

A discrete adjoint variable; constructed with respect to a required output
function, F'. See Eq. (7) in text.

D input design variable. Typically, for acrodynamics, the design variables are
parameters which describe the allowed changes in vehicle surface shape and,
perhaps, flow conditions during the design optimization cycles; that is,
parameters affecting inner and, perhaps, outer boundary conditions for both
the CFD and grid generation Boundary Value Problems (BVP’s).

F required output function; needed by either another discipline analysis code or
the MdD optimization procedure. Typically, for aerodynamics, the output
functions are quantities such as surface loadings, force and moment
coefficients, stability derivatives, etc. at several (perhaps even a number of)
flight conditions.

Q solution state vector; required unknown flow variables associated with each
discrete volume grid point.

Q = g% sensitivity function of the solution state vector, ), with respect to a design
variable, D.

R discrete representation of discipline governing equation; for aerodynamics,

this is the residual vector associated with each flow equation at the discrete
volume grid points.
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discrete volume grid point vector; three components for each grid point.

sensitivity of the discrete volume grid point vector, X, with respect to a
design variable, D. For surface-fitted grids typical of advanced CFD codes,
X’ # 0; in fact, it is not even necessarily sparse.

Description of Indices

Indices or labels are associated with each of the discipline variables given above; and said
indices are described here.

discipline index; typically max(a) is several (disciplines such as
aerodynamics, structures, performance, controls, weights, etc.).

design variable index; max(d) depends on problem and discipline.

output function index; max(f) depends on problem and discipline. For some
disciplines output functions are required at several (or a number of) flight
conditions such as for load cases and polars (See index s below.).

three-dimensional (volume) grid point indices; max(i), max(j), and max(k)
depend on configuration complexity, flow equation approximation, and
spatial resolution required.

two-dimensional (surface) grid point indices; max(i") and max(j") each
typically range from 50% to 65% of max(i) and max(j), respectively.
function evaluation index for solutions required by the optimizer at each

outer loop; max(m) varies from one to ten times several, depending upon the
optimizer.

iteration or time-step index for CFD solution; max(n) depends on algorithm
and convergence level required.

iteration index for outer optimizer loop of MdD; typically max(o) is several
to ten times several.

unknown variable index for components of solution state vector Q at each
volume grid point; max(q) depends on flow equation approximation.

function evaluation index for solutions at different flow or load conditions
for each outer optimizer loop; max(s) from several to 10 times several.

single iteration execution time per grid point; depends on algorithm,
computer, and grid size(with its dependencies).

average time required to generate solution for "single" SD; depends on the
method used.
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Size Estimates for Indices

Size estimates for typical max values required for indices defined above depend, of course, on
many factors; thus, some assumptions must be made. The number of design variables, max(d),
and the number of required output functions, max(f), depend upon the discipline and MdD
problem. The estimates here are made for the steady external aerodynamics CFD discipline
and a wing-fuselage-vertical tail semi-span HSCT configuration with engines. Note that this
engine simulation is for external airframe/engine integration effects on design; it is not for
the internal propulsion CFD simulation effects nor engine design. In the MdD environment it
appears to us that max(f) will be about the same size as max(d), since detail pressure loads will
have to be supplied to the structures discipline and polars to the performance discipline. Thus,
max(f)~max(d)~100 to several times 100.

For CFD calculations at sub-, trans-, and supersonic flow conditions required for the HSCT
design, iterative Euler or Navier-Stokes codes are required. Thus, max(q) = 5. Estimates for
max(i x j x k), max(t), and max(n) as well as central memory (CM) and solution time (T)
requirements are given in Table 1. These estimates have been extrapolated from solutions run
at % to % million grid points in codes which are among the most efficient presently available;
these 3-D codes appear to achieve multigrid (MG) convergence rates (i.e., proportional to the
total number of grid points).

Table 1— Estimates of Computer Run Time and Memory Storage Requirements for 3—-D Configuration
Analysis from Several Advanced CFD Codes Which Use Multigrid Acceleration Techniques.

Code Eqn. Ref. G :;a: k) (sec]:fgx;/ti)ter) '(‘:;f (hf*) (1(\.:41::)
TLNS3D Euler [25], 15x105] 40x10% [250 | 42 | 74
(Single block) | TLRANS 3.0 x 108 60 x 108 | 350 18 160
EUL3D Euler [26, 27], » 1.5x 1061 150 x 10% | 250 16 180
(Unstructured)

TNS3DMB | Euler | $§ 15x1051 130x106 1250 | 14 |77
(Multiblock) | TLRANS 3.0 x 106|200 x 106 |350 | 58 |[140

+ Single processor Cray 2 time (LaRC Voyager).

t n for reduction of £ to about 10,

1 Estimates provided by code developer: V.N. Vatsa of NASA, LaRC.

« Estimates provided by code developer: D.J. Mavriplis of ICASE, NASA, LaRC.

§ Estimates provided by code developers: V.N. Vatsa and M.D. Sanetrik of NASA, LaRC.
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The estimates given in Table 1 are not in disagreement with those quoted in Ref.[3] (See
their Tables 4. and 5.). The codes listed here are, however, among the fastest listed in Ref.[3].
This, coupled with a perhaps optimistic estimate of the required max(i x j x k) gives minimal
estimates for some of the quantities of interest.

Dependence of Variables on Indices

Strictly speaking, each of the discipline variables previously listed carries the individual
discipline index, a, as well as the outer optimizer loop index, o. This latter index, however, may
appear explicitly only on the functions D, F, and dF. that is, those discipline input (design) and
output functions and corresponding sensitivity derivatives seen by the optimizer. Dependencies
of the variables on the other indices is given in Table 2, where the notation v means vector, m
means matrix, whereas ¢ and r are column and row indices, respectively.

Table 2— Indicial Dependence of Variables

Variable | Type Index
d f ixjxk 3* q

A m c r r
D v r
F A r
Q v r T
Q' m c r r
R v r r
X v r r
X' m c r r

* indicates 3-D space coordinates of a grid poiint.

Dimensional Size Estimates for Variables

The length of a vector is the product of the max(indices) denoted r in Table 2; that is, for
example, the length of the vector @ is max(i x j x k) x max(q). The size of a matrix is then
the product of max(indices) denoted r x max(index) denoted c. As already noted, estmates
for the maximum sizes of indices depending on the flow solution are governed by configuration
complexity, flow equation approximation, CFD solution technique, and required spatial resolution
and iterative convergence. Other indices depend upon the design problem and methods used in
the optimization. The computational molecule (stencil) for typical 3-D CFD codes is order 10 so
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that Jacobian matrices, 3%, are sparse (only a few % dense) and have a banded, nonsymmetric

structure. Table 3 summarizes estimated dimensional sizes of discipline variables, based upon
estimates in previous sections.

Table 3— Estimates for Dimensional Size of Variables

Variables Type Size
D, F v 102
Q, R, X \ 107
A,Q, X' & m 107 x 10?
g8 o8 m 107 x 107
aE m 10% x 102
o, 5% m 102 x 107

Computational Task Estimates

The total CFD computational task for steady external aecrodynamics in a MdD is dependent
upon a number of quantities already estimated. Many of the output functions F' (such as the
detail pressure loadings required by the structures discipline) are generated in a single CFD
code run; however, several (to many) load conditions in the flight envelope are required. This
is also true for the performance discipline’s need for polars. The multiplicative factor for such
solutions is max(s). The number of solution evaluations needed by an optimizer in a single cycle
is max(m), whereas the number of optimizer cycles is max(o). Thus the estimated number of
function evaluations, N, (not including those for SD calculations) required is Ny = max(o) x
max(m) x max(s) or using the upper and lower max estimates

10 < Np < 10%° (11)

For the SD calculation one must first solve for either max(d) sensitivity functions Q' or
max(f) adjoint variables A at each optimizer step and load or flight condition. Then the estimated

max(d)
number of SD evaluations, Np:, required is Np/ = max(o) x max(s) x or or using
max(f)
the upper and lower max estimates
103 < Np < 10%° (12)
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The estimated total computational time for steady external CFD in a complete MdD, Tr,
is then

Tr=NrxT+Npx7
= (14 (Ne/NE)(T) )N T (13)

~ (1 + 100(%))Np xT

where the last step follows approximately from Eqs. (11) and (12). In order to get Tt to a
reasonable number, it is clear that (r}) and NrxT must be made as small as possible. The present
incremental iterative form addresses getting (%) smaller than one, the approximate value for
“brute-force” finite difference determination of the SD. Other approximation techniques, such as
discussed in Refs.[11, 12], or other design optimization strategies, as in Refs.[6-8], for example,
must be used to decrease Np x T.
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